

Rediscovering botulinum neurotoxin A (BoNT-A) in OA

Université Paris Cité, Faculté de Santé, UFR de Médecine, Paris, FRANCE INSERM UMR-S 1124, UFR des Sciences Fondamentales et Biomédicales, Paris, FRANCE Rééducation et Réadaptation de l'Appareil Locomoteur et des Pathologies du Rachis, Cochin, AP-HP, Paris, FRANCE

Christelle Nguyen, MD, PhD

Full Professor of Physical and Rehabilitation Medicine Université Paris Cité, Paris, FRANCE Hôpital Cochin, Paris FRANCE INSERM UMR-S1124, Paris France

I have financial relationships with

• Advisory Board: Ipsen, Merz

<u>AND</u>

My presentation does include a discussion of off-label or investigational use

I am investigator in **5 RCTs** assessing BoNT-A for RMDs

- 2 RCTs in base-of-thumb OA (RHIBOT I, RHIBOT II)
- 1 RCT in shoulder OA (SHOTOX)
- 1 RCT in piriformis syndrom (PIRITOX)
- 1 RCT in lateral epicondylitis (EPITOX)

<	Search for "botulinu	um toxin"
Q bo	otulinum toxin	Annuler

Your search returned 2 results.

EVENT

Rediscovering Botulinum Toxin in OA samedi, avr. 20 2:00 PM

>

ABSTRACT

EFFICACY AND SAFETY OF INTRA-ARTICULAR INJECTION OF BOTULINUM TOXIN A FOR MUSCULOSKELETAL PAI... Only small interest from the OA community?

Outlines

- What rationale for BoNT-A in (RMDs and) OA?
- What indications? What evidence?
- Safety concerns?

Botulinum toxin

- Neurotoxin isolated in 1944
- Produced by *Clostridium Botulinum*
 1 heavy chain → receptor binding
 1 light chain → proteolytic activity
- Inhibits acetylcholine release at the neuromuscular junction
- Causes the disease botulism
- 7 main types from A to G
 - \circ A and B for medical use

Label indications

• First use in 1978 for strabismus (Alan B. Scott, San Franciso)

• Ophtalmology, neurology, aesthetic and pain medicine

- Oculomotricity disorders (1993)
- o Blepharospasm (1994)
- Hemifacial spasm (1994)
- \circ Cervical dystonia (1994)
- \circ Bladder dysfunction (2000)
- \circ Limb spasticity (2003)
- o Severe axillary hyperhidrosis (2003)
- \circ Wrinkles (2003)
- \circ Chronic migraine (2021)

All utilisations of BoNT-A in RMDs are off-label or investigational

Approved products (France)

- **Botox**[®]: onabotulinumtoxin A (AbbVie) •
- Xeomin[®]: incobotulinumtoxin A (Merz) ٠
- **Dysport[®]: abobotulinumtoxin** A (lpsen) ٠
- Dose equivalent units ٠

Table 1.	Botulinum	toxin	products and	protein conter	nt/100 units	[5.6]
lable 1.	Dotumum	IUAIII	products and	protein conter	m/ 100 units	[0,0]

Nonproprietary Name	150-kD Protein Content (ng)	Total Protein (150 kD and NAP) Content (ng)	Dose Equivalent Units
Onabotulinumtoxin A	0.73	5.00	1
Incobotulinumtoxin A	0.44	0.44	1
Abobotulinumtoxin A	0.65	0.87	2–3

NAP = nontoxic accessory proteins.

Effects on neuromuscular junctions

Effects on nociceptive neurons

Yoo KY et al. Neurotox Res 2014 Pavone F et Luvisetto S. Toxins 2010 Namazi H. Int Immunopharmacol 2006

BoNT-A potential positionning in OA pain?

Malfait AM, Schnitzer TJ. Nat Rev Rheumatol 2013

Outlines

- What rationale for BoNT-A in (RMDs and) OA?
- What indications? What evidence?
- Safety concerns?

What would be the anatomical targets in RMDs and OA?

First report of intramuscular BoNT-A injection for epicondylitis by Morré et al. in 1997

Morré HHE et al. Lancet 1997

Treatment of chronic tennis elbow with botulinum toxin

H H E Morré, S B Keizer, J J v Os

Uncontrolled open study, N=14

- 43 yo, 9 women
- Pain duration ~ 2.4 years
- IM BoNT-A 30 UI
- Outcome: Δ pain at 6-8 months

In an open study we have treated 14 patients (five men, nine women) with chronic treatment-resistant tennis elbow. Age varied from 34 to 60 years (mean 43 years) and the duration of symptoms from 0.6 to 6 years (mean 2.4 years). These patients were treated with 20–40 units botulinum toxin (average 30 units) injected under electromyographic guidance into the extensor digitorum communis III and IV muscle. The objective was to cause extension paresis of the third and fourth fingers which occurred in ten patients within 2 weeks after injection and in four patients after a second injection 1 month later. The paresis lasted 3-4 months and the second and fifth fingers remained unaffected. During the follow-up (6-8 months), pain relief of more than 50% on a selfassessment scale occurred in nine patients and pain disappeared completely in four patients. Pain relief occurred in ten patients within 2 weeks, in one patient within 3 weeks, and in two patients after 1 month. In one patient the pain seemed to be based on a carpal tunnel syndrome. No side-effects or complications occurred to any patient during treatment.

15

Treatment of Lateral Epicondylitis with Botulinum Toxin

A Randomized, Double-Blind, Placebo-Controlled Trial

Shiu Man Wong, MB BCh; Andrew C.F. Hui, MBBS; Po-Yee Tong, BSc; Dawn W.F. Poon, BSc; Evelyn Yu, BSc; and Lawrence K.S. Wong, MD

	Evaluation	Mean (SE))
		Botulinum Toxin Group ($n = 30$)	Placebo Group $(n = 30)$
RCT, N=60	Pain intensity, mm*		
• 45 yo, 49 women	Baseline	65.5 (15.0)	66.2 (13.2)
 Pain duration ~ 8 months 	Week 4	25.3 (18.8)	50.5 (21.7)
 Pain intensity ~ 6.5/10 	Week 12	23.5 (22.3) 🎽 40 pts	43.5 (23.9) 🔰 15 pts
 Exp group: IM aboBoNT-A 60 UI Ctrl group: IM saline Primary outcome: A pain NBS 	Grip strength, <i>kg</i> Right side		
(0.100) at weeks 4 and 12	Baseline	20.29 (5.27)	23.81 (7.28)
(0-100) at weeks 4 and 12	Week 4	17.47 (4.47)	23.13 (7.39)
	Week 12	20.65 (4.89)	24.75 (7.35)
	Left side		State of the second
	Baseline	19.56 (5.46)	20.06 (6.60)
	Week 4	18.75 (7.99)	21.41 (6.36)
	Week 12	21.31 (6.96)	22.12 (6.02)

Treatment of Lateral Epicondylitis with Botulinum Toxin

A Randomized, Double-Blind, Placebo-Controlled Trial

Shiu Man Wong, MB BCh; Andrew C.F. Hui, MBBS; Po-Yee Tong, BSc; Dawn W.F. Poon, BSc; Evelyn Yu, BSc; and Lawrence K.S. Wong, MD

Adverse Event	Botulinum Toxin Group (n = 30), n	Placebo Group (n = 30), n	Total (n = 60), n
Postinjection			
Pain	2	1	3
Nausea	0	1	1
Week 4			
Weakness in finger extension	10	6	16
Paresis of digits	4	0	4
Week 12			
Weakness in finger extension	2	1	3
Paresis of digits	1	0	1
Total	19 63%	9	28

Wong SM et al. Ann Int Med 2005

Injecting the right muscle to reduce off-target effects

Extensor carpi radialis brevis (ECRB) = main muscle that pulls the common tendon of epicondylar muscles

frequency of paresis of the 3rd-4th fingers ~17% (*vs* 63% in Wong's study)

Injecting the neuromuscular junction

Diffusion of BoNT-A is limited \rightarrow parallel to muscle fiber

Optimization of the injection techniques to efficiently access motor endplate zones

- US or EMG guidance
- At different depths perpendicular to the direction of the muscle fiber
- At higher volume

Elwischger K et al. J. Neurol Sci 2014

Intra-articular injections: 14 RCTs since 2009

Age		63
Pain intensity (/1	00)	60
Joints assessed	- <mark>Knee</mark> - Base-of-thumb - Shoulder - Ankle	10 (N=814) 1 (N=60) 2 (N=68) 1 (N=75)
Conditions	- <mark>OA</mark> - Painful TKR - OA/RA - Frozen shoulder	11 (N=900) 1 (N=58) 1 (N=40) 1 (N=28)
Comparators	- IA saline - IA corticosteroids - IA hyaluronan - Non-IA comparator (PT, education)	7 (N=611) 4 (N=223) 3 (N=255) 2 (N=93)
JADAD score	- ≥ 4/5	10

Many « positive » meta-analyses

Efficacy and Safety of Intra-Articular Botulinum Toxin A Injection for Knee Osteoarthritis

JB&JS

A Systematic Review, Meta-Analysis, and Meta-Regression of Clinical Trials

Yoyos Dias Ismiarto, MD, PhD, and Gregorius Thomas Prasetiyo, MD

Special Issue: Potential	Diagnosis	or	Treatment	Targets
of Osteoarthritis				

The efficacy and safety of **Botulinum Toxin Type A in** painful knee osteoarthritis: a systematic review and meta-analysis

-	MEDICAL RESEARCH
Journ	al of International Medical Research
	48(4) 1-10
	C The Author(s) 2019
	Article reuse guidelines
	sagepub.com/journals-permission
	DOI: 10.1177/0300060519895868

lournal of

INTERNATIONAL

me/imr (S)SAGE

2019

	Contents lists available at ScienceDirect
5-5-1-6	Toxicon
ELSEVIER	journal homepage: www.elsevier.com/locate/toxicon

The efficacy and safety of intra-articular botulinum toxin type A injection for knee osteoarthritis: A meta-analysis of randomized controlled trials

Toxicon 224 (2023) 107026

Chen Wang^{a,1}, Jinpeng Zhao^{b,1}, Fang Gao^a, Min Jia^c, Luoman Hu^a, Chengfei Gao^{a,1}

Toxicon 241 (2024) 107656 Contents lists available at ScienceDirect Toxicon journal homepage: www.elsevier.com/locate/toxicol

Intraarticular botulinum toxin type A versus corticosteroid or hyaluronic acid for painful knee osteoarthritis: A meta-analysis of head-to-head randomized controlled trials

Yinan Yang , Guozheng Li, Yuping Su

Some concerns

- Different locations lumped together
- Non-IA comparators ٠ lumped with IA comparators
- Omission of arms

Shuchao Zhai^{1,*}, Botao Huang^{2,*} and Kai Yu¹

Intra-articular injections of botulinum toxin a for refractory joint pain: a systematic review and meta-analysis

Clinical Rehabilitation 2017, Vol. 31(4) 435-443 © The Author(s) 2016 Reprints and permissions: sagepub.co.uk/iournalsPermissions.nav DOI: 10.1177/0269215516644951 iournals.sagepub.com/home/cre (\$)SAGE

Efficacy of Intra-Articular Botulinum Toxin in **Osteoarticular Joint Pain** A Meta-Analysis of Randomized Controlled Trials

Courseau, Mathilde MD^{*}; Salle, Pascale Vergne PhD^{*}; Ranoux, Danièle MD[†]; de Pouilly Lachatre, Anais^{*}

Author Information 😔

The Clinical Journal of Pain 34(4):p 383-389, April 2018. | DOI: 10.1097/AJP.000000000000538

Tao Wu^{1*}, Hai-xin Song^{1*}, Yan Dong², Ye Ye¹ and Jian-hua Li¹

Gaanière M et al. Ann Phys Rehab Med 2024 (in revision)

Knee OA: only one very high-quality RCT

Osteoarthritis and Cartilage

Efficacy and safety of single-dose onabotulinumtoxinA in the treatment of symptoms of osteoarthritis of the knee: results of a placebo-controlled, double-blind study

T.E. McAlindon †, U. Schmidt ‡, D. Bugarin \S , S. Abrams \S , T. Geib \S , R.E. DeGryse \S , K. Kim \S , T.J. Schnitzer \parallel^*

† Division of Rheumatology, Tufts Medical Center, Boston, MA, USA
 ‡ CGB Ballerup, Bioclinica Research Network, Denmark
 § Allergan Plc, Irvine, CA, USA
 Il Northwestern University Feinberg School of Medicine, Chicago, IL, USA

Knee OA: only one very high-quality RCT

- Experimental group 2: IA onaBoNT-A 200 UI (n=37)
- Control group: IA saline (n=82)

Knee OA: only one very high-quality RCT

Quantitative synthesis for knee OA (only IA comparators)

	14		$\boldsymbol{<}$	IA Co	mparat	or	>	Std. Mean Difference	Std. Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	rotal	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl	
5.1.1 Short-term										
Arendt-Nielsen 2017	4.2	1.1	61	4.2	1.3	60	18.4%	0.00 [-0.36, 0.36]	_ + _	
Bao 2018	3.9	0.8	20	5.3	1	40	15.4%	-1.47 [-2.07, -0.87]		
Boon 2010	5.2	2.4	40	5.4	2.3	20	16.2%	-0.08 [-0.62, 0.45]		
McAlindon 2018	4.2	1.3	86	3.9	1.2	87	19.0%	0.24 [-0.06, 0.54]	+ - -	
Mendes 2019	1.7	2.5	35	1.7	2.5	70	17.8%	0.00 [-0.41, 0.41]	_ _	
Shukla 2018 Subtotal (95% CI)	4.1	1.4	15 257	5.8	1.4	15 292	13.1% 100.0 %	-1.18 [-1.97, -0.40] - 0.35 [-0.82, 0.12]		
Heterogeneity: Tau ² =	0.28; Ch	i ² = 3	2.70, di	f= 5 (P =	0.000	01); I ₹ =	= 85%			
Test for overall effect: 2	Z=1.45	(P = 0	0.15)							
5.1.2 Intermediate-ter	m									
Arendt-Nielsen 2017	4.2	1.1	61	4	1.3	60	19.4%	0.17 [-0.19, 0.52]	_ + =	
Boon 2010	4.9	2.2	28	5.2	2.1	13	12.9%	-0.14 [-0.79, 0.52]		100-400 111
McAlindon 2018	40	1.3	86	40	1.2	87	20.7%	0.00 [-0.30, 0.30]	-+-	
Mendes 2019	1.3	2.2	35	1.7	2.6	70	18.3%	-0.16 [-0.57, 0.25]		PCT-6
Rezasoltani 2020	7.4	6.5	28	13.3	6.6	82	17.4%	-0.89 [-1.34, -0.45]	_ 	
Shukla 2018	4.6	1.7	15	5.9	1.2	15	11.3%	-0.86 [-1.61, -0.11]		N-540
Subtotal (95% CI)			253			327	100.0%	-0.27 [-0.61, 0.08]	-	IN=349
Heterogeneity: Tau ^z =	0.13; Ch	i ² = 1	7.94, di	f= 5 (P =	: 0.003)); I ² = 7	2%			
Test for overall effect: 2	Z=1.52	(P = (0.13)							
5.1.3 Long-term										
Boon 2010	5.2	2.3	21	5.1	2.8	11	23.0%	0.04 [-0.69, 0.77]		
McAlindon 2018	4.2	1.3	76	4.1	1.2	82	29.2%	0.08 [-0.23, 0.39]		
Rezasoltani 2021	2.8	1.6	25	5.1	1.8	25	24.8%	-1.33 [-1.95, -0.71]	_	
Shukla 2018	5.2	1.5	15	6	1.2	15	23.0%	-0.57 [-1.31, 0.16]		
Subtotal (95% Cl)			137			133	100.0 %	-0.43 [-1.12, 0.26]		
Heterogeneity: Tau² =	0.39; Ch	i²= 1	7.33, di	f= 3 (P =	0.000	6); I ≃ =	83%			
Test for overall effect: 2	Z=1.23	(P = 0).22)							
								_	-2 -1 0 1 2	

Favours IA BTA Favours IA Comparator

24

Gagnière M et al. Poster 849, OARSI 2024

Shall we throw out BoNT-A for RMDs with the bath water?

Changes in intra-articular biomarkers

Percentage change in biomarker concentration at week 12 after IA onabotulinumtoxinA or placebo

Biomarker*	OnabotulinumtoxinA 400 U $(n = 5)^{\dagger}$	OnabotulinumtoxinA 200 U $(n = 4)^{\dagger}$	Placebo $(n = 9)^{\dagger}$
Glutamine	0.6 (4.6) [n = 3]	$-9.0(7.5)[n=3]^{\ddagger}$	31.7 (54.6) [<i>n</i> = 4]
Substance P	-17.1(26.1)[n=2]	-12.7(34.1)[n=2]	1.3 (35.8) [<i>n</i> = 4]
CTX-2	$-75.4 \ [n=1]^{\$}$	$-16.0 [n = 1]^{\$}$	90.8 (196.9) [<i>n</i> = 4]
CTX-1	17.6 $[n = 1]^{\S}$	-9.1(9.0)[n=2]	-10.9(15.3)[n = 5]
Aggrecan	-14.8(25.5)[n=5]	-7.3(14.2)[n=4]	19.4 (47.8) $[n = 9]$
MMP-1	7.2 (22.9) $[n = 4]$	-1.4(38.6)[n=4]	29.0 (125.6) $[n = 9]$
MMP-3	-10.6(22.1)[n=5]	-4.2(15.8)[n=4]	12.3 (52.9) [<i>n</i> = 9]
MMP-9	-2.1(56.2)[n=3]	20.6(52.0)[n=2]	-1.4(7.6)[n=2]
Hyaluronic acid	-0.1(31.5)[n=5]	1.8(10.1)[n=4]	3.6(21.7)[n=9]
IL-6	168.0 (305) $[n = 5]$	52.6(95.6)[n = 4]	117.0(347)[n = 9]

**** in pain sensitization in a « nociceptive » subpopulation

		OnabotulinumtoxinA	Placebo	Total	p value	
	Outcome	n = 36	n = 32	n = 68		
	Mean (se) QST by knee PPT*					
	Baseline, kPa	265.4 (24.9)	286.2 (24.8)	275.2 (17.5)	0.370	
	Week 4 change from baseline, %	28.3 (7.8)	17.4 (10.5)	23.1 (6.5)	0.107	
	Week 8 change from baseline, %	29.5 (7.5)	34.8 (15.8)	32.0 (8.4)	0.278	
	Week 12 change from baseline, %	28.5 (8.6)	31.1 (15.6)	29.7 (8.6)	0.620	
	Mean (se) spreading sensitization by PPT† Tibialis anterior (leg)					
	Baseline, kPa	197.1 (17.1)	234.3 (16.8)	214.6 (12.1)	0.129	
	Week 4 change from baseline, %	33.3 (9.9)	4.9 (6.1)	19.8 (6.2)	0.030	
	Week 8 change from baseline, %	35.5 (8.5)	6.6 (6.4)	22.0 (5.7)	0.021	
	Week 12 change from baseline, %	26.8 (7.2)	13.1 (8.4)	20.3 (5.5)	0.134	
	Extensor carpi radialis longus (arm)					
	Baseline, kPa	290.1 (19.8)	317.6 (21.2)	303.1 (14.5)	0.314	
	Week 4 change from baseline, %	22.0 (5.8)	16.3 (12.0)	19.3 (6.4)	0.027	
pain	Week 8 change from baseline, %	24.4 (6.3)	23.9 (13.9)	24.2 (7.3)	0.230	
	Week 12 change from baseline, %	31.0 (9.8)	20.9 (13.3)	26.2 (8.1)	0.267	
	Mean (se) spreading sensitization by					
ation [.]	total area of knee pain‡					
	Study knee					
12	Baseline, cm ²	1.1 (0.2)	1.3 (0.2)	1.2 (0.1)	0.226	
	Week 4 change from baseline, %	18.3 (42.2)	5.8 (15.3)	12.4 (23.1)	0.276	
	Week 8 change from baseline, %	1.7 (34.4)	-5.0 (16.5)	-1.4 (19.7)	0.345	
	Week 12 change from baseline, %	88.2 (98.1)	-18.3 (16.9)	37.3 (51.9)	0.835	
	Contralateral knee					
	Baseline, cm ²	0.8 (0.2)	0.2 (0.1)	0.5 (0.1)	0.001	
	Week 4 change from baseline, %	-27.7 (12.5)	29.9 (38.1)	-13.8 (13.7)	0.145	
	Week 8 change from baseline, %	-43.7 (13.1)	6.3 (30.2)	-31.2 (12.8)	0.109	
	Week 12 change from baseline, %	-45.0 (15.4)	28.7 (45.8)	-26.6 (16.9)	0.125	

RCT, N=121

- 62 yo, 62 women
- Knee OA, KL I/II/III
- Pain duration ~ 9 years
- Exp group: IA OnaBoNT-A 200 UI
- Ctrl group: IA saline
- Primary outcome: pair biomarkers
- « Nociceptive » subpopulation: PainDetect-Questionnaire ≤ 12

What about smaller, non-weight-bearing, upper limb joints?

RHIZORTHESE TRIAL

Splinting: **\U015** pain, **オ** function at 12 months → Gap between baseline and 12 months

- IA GC and hyaluronan not recommended
- Safety profile concerns with other medication
- Candidate molecule: IA BoNT-A?
 - Prolonged effects ~ 3-6 months
 - Analgesic + paralyzing effect (joint rest)

Rannou F et al. Ann Int Med 2009

RHIBOT TRIAL

RCT, N=60

- 65 yo, 47 women, base-of-thumb OA
- Pain duration ~ 6.5 years
- Pain intensity ~ 6/10
- Experimental group: IA onaBoNT-A 50 UI + splint
- Control group: IA saline + splint
- Primary outcome: <u>A pain NRS (0-100) at 3 months</u>

Gil C et al. BMJ Open 2018

Intra-articular botulinum toxin A injection for painful base-of-thumb osteoarthritis: a double-blind, randomised, controlled, phase 3 trial (RHIBOT)

Christelle Nguyen, Hendy Abdoul, Raphaël Campagna*, Henri Guerini*, Léa Jilet, Catherine Bedin, Franck Chagny, Gaëlle Couraud, Camille Daste, Jean-Luc Drapé, Rémy Fléchon, Charlotte Gil, Corinne Guérin, Marie-Martine Lefèvre-Colau, Serge Poiraudeau†, Estelle Randriamampandry, Alexandra Roren, Antoine Feydy, François Rannou

Results

		OnaBoNT-A + Orthosis (n=30)	Saline + Orthosis (n=30)	Absolute difference (95% Cl)	Р
•	Δ pain NRS (0-100) at 1 month	-34.3 (-42.9 to -25.7)	-18.0 (-26.2 to -9.8)	-16.3 (-27.9 to -4.7)	0.004
•	Δ pain NRS (0-100) at 3 months	-25.7 (-35.5 to -15.8)	-9.7 (-17.1 to -2.2)	-16.0 (-28.1 to -3.9)	0.043
•	Δ pain NRS (0-100) at 6 months	-18.3 (-26.9 to -9.8)	-11.7 (-21.2 to -2.2)	-6.7 (-19.2 to 5.9)	0.367
•	OARSI responders at 3 months	22 (73)	18 (60)	13.3 (-10.3 à 37.0)	0.273

Nguyen C et al. Lancet Rheumatol 2022

Inconsistent results with knee OA trials

	IA	BTA		IA Co	npara	tor	1	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
5.1.1 Short-term									
Arendt-Nielsen 2017	4.2	1.1	61	4.2	1.3	60	18.4%	0.00 [-0.36, 0.36]	-+
Bao 2018	3.9	0.8	20	5.3	1	40	15.4%	-1.47 [-2.07, -0.87]	_
Boon 2010	5.2	2.4	40	5.4	2.3	20	16.2%	-0.08 [-0.62, 0.45]	
McAlindon 2018	4.2	1.3	86	3.9	1.2	87	19.0%	0.24 [-0.06, 0.54]	+ - -
Mendes 2019	1.7	2.5	35	1.7	2.5	70	17.8%	0.00 [-0.41, 0.41]	
Shukla 2018	4.1	1.4	15	5.8	1.4	15	13.1%	-1.18 [-1.97, -0.40]	
Subtotal (95% CI)			257			292	100.0%	-0.35 [-0.82, 0.12]	
Heterogeneity: Tau ² = 0).28; Ch	i z = 30	2.70, dt	f= 5 (P <	0.000	01); l² =	= 85%		
Test for overall effect: Z	= 1.45	(P = 0	1.15)						
5.1.2 Intermediate-terr	n								
Arendt-Nielsen 2017	4.2	1.1	61	4	1.3	60	19.4%	0.17 [-0.19, 0.52]	- +
Boon 2010	4.9	2.2	28	5.2	2.1	13	12.9%	-0.14 [-0.79, 0.52]	
McAlindon 2018	40	1.3	86	40	1.2	87	20.7%	0.00 [-0.30, 0.30]	-+-
Mendes 2019	1.3	2.2	35	1.7	2.6	70	18.3%	-0.16 [-0.57, 0.25]	
Rezasoltani 2020	7.4	6.5	28	13.3	6.6	82	17.4%	-0.89 [-1.34, -0.45]	_ -
Shukla 2018	4.6	1.7	15	5.9	1.2	15	11.3%	-0.86 [-1.61, -0.11]	
Subtotal (95% CI)			253			327	100.0%	-0.27 [-0.61, 0.08]	•
Heterogeneity: Tau ² = 0).13; Ch	i² = 11	7.94, di	f= 5 (P =	0.003); I ^z = 7	2%		
Test for overall effect: Z = 1.52 (P = 0.13)									
5.1.3 Long-term									
Boon 2010	5.2	2.3	21	5.1	2.8	11	23.0%	0.04 [-0.69, 0.77]	_
McAlindon 2018	4.2	1.3	76	4.1	1.2	82	29.2%	0.08 [-0.23, 0.39]	- -
Rezasoltani 2021	2.8	1.6	25	5.1	1.8	25	24.8%	-1.33 [-1.95, -0.71]	_
Shukla 2018	5.2	1.5	15	6	1.2	15	23.0%	-0.57 [-1.31, 0.16]	
Subtotal (95% CI)			137			133	100.0%	-0.43 [-1.12, 0.26]	
Heterogeneity: Tau² = 0.39; Chi² = 17.33, df = 3 (P = 0.0006); I² = 83%									
Test for overall effect: Z	= 1.23 ((P = 0	1.22)						
									Favours IA BTA Favours IA Comparator
									. aroaro in o in in aroaro in o o inparator

 Participants in a « more » chronic phase of OA: 7 sensitization?

4 key differences with knee OA trials

• Add-on therapy to the rest orthosis

 Synergistic effects with muscle motor deficit: -30.8 (N=14) vs -22.2 (N=16) points at 3 months, in participants with and without deficit, respectively

 Smaller joint → higher dose injected related to the joint volume

Efficacy may depend on BoNT-A dose related to joint volume

Gagnière M et al. Poster 849, OARSI 2024

Intramuscular instead of intra-articular injection?

RCT, N=46

Hypothesis: **7** activation of adductor muscles in hip OA

- 62 yo, 25 women, hip OA, KL II/III
- Pain intensity ~ 7/10
- TG: IM aboBoNT-A 400 UI
- PG: IM saline
- Primary outcomes: HHS and pain VAS at 4 weeks

Eleopra R et al. Toxins 2018

Outlines

- What rationale for BoNT-A in (RMDs and) OA?
- What indications? What evidence?
- Safety concerns?

Safety concerns?

	OnaBoNT-A + Orthosis (n=30)	Saline + Orthosis (n=30)
Serious adverse events	0	0
Minor adverse events	48	40
Hand pain	6 (20)	11 (37)
 Tenar muscle motor deficit 	14 (47)	2 (7)
 Musculoskeletal pain 	5 (17)	6 (20)
Infection	1 (3)	2 (7)
 Hand paresthesia 	1 (3)	1 (3)
Local bleeding	0 (0)	1 (3)
Thrombophlebitis	0 (0)	1 (3)

Nguyen C et al. Lancet Rheumatol 2022

In the 14 RCTs of intra-articular BoNT-A

- No studies reported any serious adverse events
- The frequency of minor adverse events was similar in both groups

Rapidly progressive OA?

12 weeks after intra-articular injection

Variable	IA BoNT/A n = 6	IA Placebo n = 6	P-value	
Cartilage structure	3 (0-3)	4 (2-7)	0.534	
Synovial structure	3 (3-4)	3 (2-4)	0.593	
Synovial infiltrates	1 (1-2)	2 (1-2)	0.638	

Changes are presented as median and IQR.

IA BoNT/A, intra-articular botulinum toxin A; placebo, 0.9% saline.

First study on cartilage explants BoNT-A (0, 1, 10, 50, 100, 500 pg/mL) for 96 hrs **No effects on cartilage homeostasis**: inflammation (PGE2), ECM degradation (sGAGs CS846), cell apoptosis (TUNEL)

Take home messages

Repositioning "old" molecules like BoNT-A as IA targeted biologics for OA pain

- Strong rationale for OA pain \rightarrow effects on peripheral and central sensitization
- Evidence from small RCTs → epicondylitis and base-of-thumb OA
- No evidence in other indications → dose related to joint volume ? Weight-bearing ?

In our department

- Offered off label after first-line treatments have failed
- In well-phenotyped patients (consistent anatomical target, nociceptive OA)
- Never as a stand alone treatment
- All injections under US-guidance, by experienced operator

Future directions

Going back to the bench

- Effects (and harms) of IA BoNT-A on specific preclinical models of OA
- Effects (and harms) of IA BoNT-A on joint biomechanics, cinematics
- Optimized effects with newly engineered BoNT-A or from other Clostridium

Getting back to colleagues with experience of BoNT-A: 5 D's of BoNT

de Sa Earp AP et al. J Cosmet Laser Ther 2008

Journal of Cosmetic and Laser Therapy. 2008; 10: 93–102	informa healthcare	248547 E
ORIGINAL ARTICLE		
The five D's of botulinum toxin: Doses, dilution, diffusion, and dogma	duration	Launching of RHIBOT II trial: September 2024
ANA PAULA DE SA EARP & ELLEN S. MARMUR		
The Mount Sinai Medical Center, Dermatology, New York, NY, USA		

Ackowledgements

Dr. Laëtitia Peaudecerf, Dr. Claire du Ranguet, Léa Jilet

Liberté Égalité Fraternité

Scientific Director Principal Investigator Methodologist

Prof. François Rannou Prof. Christelle Nguyen Dr. Hendy Abdoul

Prof. Antoine Feydy

Dr. Henri Guerini

Investigators Paris Cochin

Dr. Camille Daste

Dr. Marie-Martine Lefèvre-Colau

Investigators Paris St-Antoine

Prof. Francis Berenbaum

Prof. Jérémie Sellam

Dr. Raphaël Campagna

Investigator Bordeaux

Prof. Jean-Luc Drapé

Prof. Mathieu de Sèze

Investigator Montpellier

Prof. Yves-Marie Pers

Thank you!

U

MÉDECINE Santé Université Paris Cité

