

Efficacy and safety of intra-articular injection of botulinum toxin A for musculoskeletal pain: a systematic review and meta-analysis

Prof. Christelle NGUYEN, MD, PhD Paris, FRANCE

Université Paris Cité, Faculté de Santé, UFR de Médecine AP-HP.Centre, Hôpital Cochin, Rééducation de l'Appareil Locomoteur et des Pathologies du Rachis, INSERM UMR-S1124, Campus St-Germain-des-Prés

Advisory Board: Ipsen, Merz

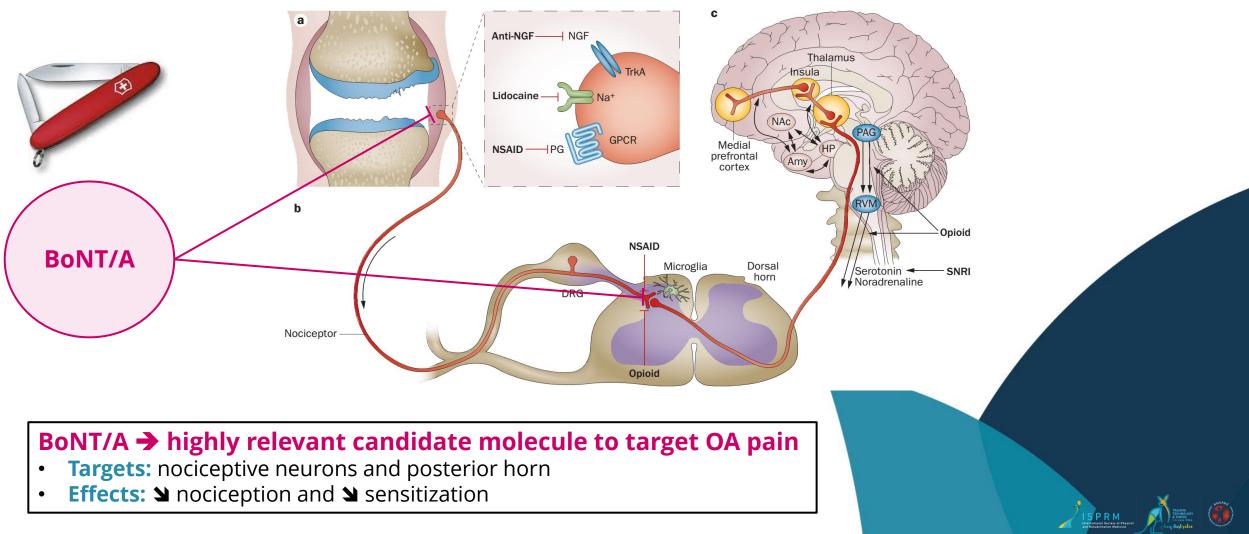
<u>AND</u>

My presentation does include a discussion of off-label or investigational use

Osteoarthritis (OA)

- Most frequent rheumatic disease
- Affects all the components of the joint

- Key symptoms
 - Joint pain
 - Joint-specific impairments and activity limitations



70% older than 55 years

ISPRM International Society of and Hehabilitation Ned

OA pain and OA pain targets

Malfait AM, Schnitzer TJ. Nat Rev Rheumatol, 2013

Many « positive » meta-analyses of intra-articular BoNT/A

Efficacy and Safety of Intra-Articular Botulinum Toxin A Injection for Knee Osteoarthritis

A Systematic Review, Meta-Analysis, and Meta-Regression of Clinical Trials

Yoyos Dias Ismiarto, MD, PhD, and Gregorius Thomas Prasetiyo, MD

Special Issue: Potential Diagnosis or Treatment Targets of Osteoarthritis

Journal of INTERNATIONAL MEDICAL RESEARCH

Journal of International Medical Research

48(4) 1-10

(\$)SAGE

© The Author(s) 2019

Article reuse guidelines:

sagepub.com/journals-permissions DOI: 10.1177/0300060519895868

journals.sagepub.com/home/imr

The efficacy and safety of Botulinum Toxin Type A in painful knee osteoarthritis: a systematic review and meta-analysis

Shuchao Zhai^{1,}*, Botao Huang^{2,}* and Kai Yu¹

Intra-articular injections of botulinum toxin a for refractory joint pain: a systematic review and meta-analysis

Tao Wu^{1*}, Hai-xin Song^{1*}, Yan Dong², Ye Ye¹ and Jian-hua Li¹

Intraarticular botulinum toxin type A versus corticosteroid or hyaluronic acid for painful knee osteoarthritis: A meta-analysis of head-to-head randomized controlled trials

Yinan Yang , Guozheng Li, Yuping Su

The efficacy and safety of intra-articular botulinum toxin type A injection for knee osteoarthritis: A meta-analysis of randomized controlled trials

Chen Wang ^{a,1}, Jinpeng Zhao ^{b,1}, Fang Gao ^a, Min Jia ^c, Luoman Hu ^a, Chengfei Gao ^a,

Clinical Rehabilitation 2017, Vol. 31 (4) 435–443 © The Author(s) 2016 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/0269212516644951 journals.sagepub.com/home/cre SAGE

Efficacy of Intra-Articular Botulinum Toxin in Osteoarticular Joint Pain A Meta-Analysis of Randomized Controlled Trials

Courseau, Mathilde MD^{*}; Salle, Pascale Vergne PhD^{*}; Ranoux, Danièle MD[†]; de Pouilly Lachatre, Anais^{*}

Author Information⊗

The Clinical Journal of Pain 34(4):p 383-389, April 2018. | DOI: 10.1097/AJP.00000000000538

Share several drawbacks

- Diverse joint locations and conditions lumped together
- Non-intra-articular comparators lumped with intra-articular comparators
- Arms omitted from the analyses

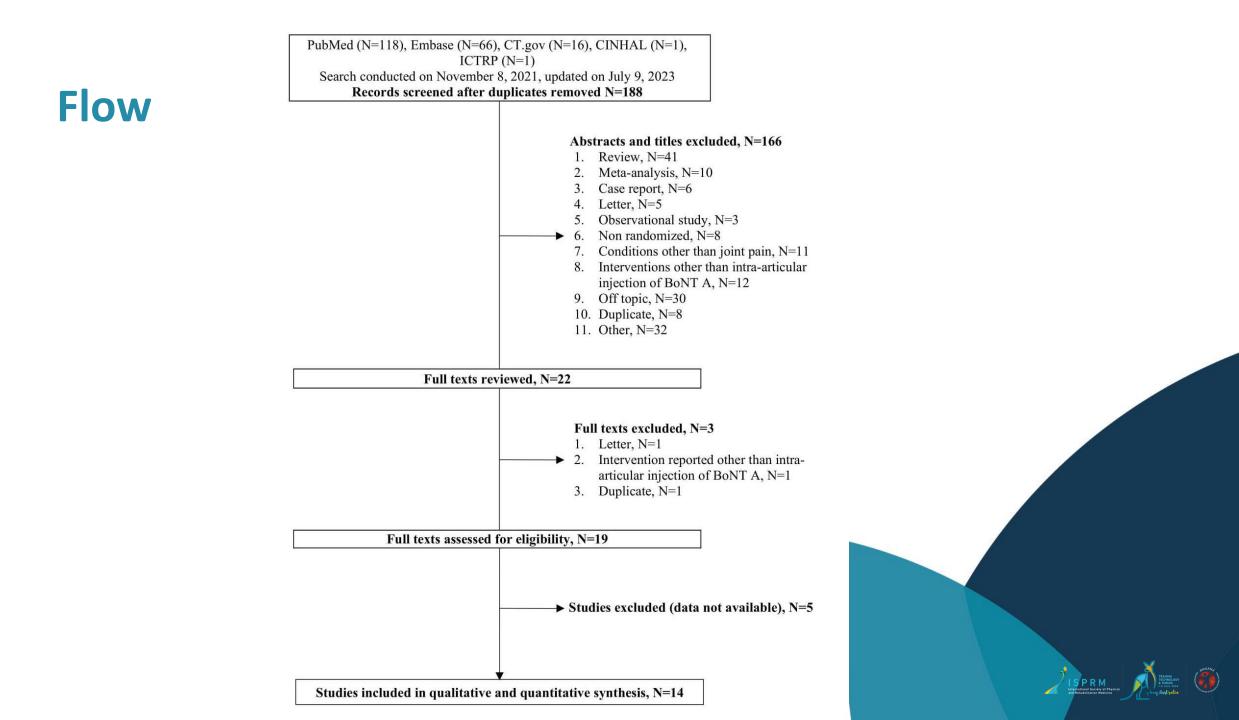
Primary objective

To assess the efficacy of intra-articular BoNT/A for the treatment of joint pain with <u>more</u> homogeneous locations, conditions and comparators

Methods

Interpretation SMD < 0.2 → null effects SMD 0.2 to 0.5 → weak effects SMD 0.5 to 0.8 → moderate effects SMD > 0.8 → large effects

- **Design.** Systematic review of RCTs with meta-analysis when possible
- **Participants.** Adults with chronic (> 3 month-duration) joint pain (any location, any condition)
- Interventions. Intra-articular BoNT-A (any dosage, US or landmark-guided)
- **Comparators.** Other intra-articular treatments or non-intra-articular treatments or usual care
- **Outcomes.** In the short (< 3 months), intermediate (3-6 months) and long term (> 6 months)
 - Joint pain
 - Joint-specific activity limitations
 - Adverse events
- Search strategy. MEDLINE, EMBASE, ClinicalTrials.gov, CINHAL and ICTRP databases were searched from inception <u>to July 9, 2023</u>. Two independent reviewers selected studies and extracted data, in a standardized manner
- Statistical analysis. The results of quantitative synthesis were expressed as <u>standardized mean</u> <u>difference (SMD)</u> (95% CI). We performed a meta-analysis when appropriate. The study was registered at www.crd.york.ac.uk/prospero (CRD4202190157)


Results

Efficacy and safety of intra-articular injection therapy of botulinum toxin for joint pain: a systematic review and metaanalysis

Mathieu Gagnière MD, Camille Daste MD, MPH, Raphaël Campagna MD, Jean-Luc Drapé MD, PhD, Antoine Feydy MD, PhD, Henri Guerini MD, Marie-Martine Lefèvre-Colau MD, PhD, François Rannou MD, PhD, <u>Christelle Nguyen MD, PhD</u>

Gagnière M et al, Ann Phys Rehab Med 2024 (in press)

14 RCTs since 2009

Age		63
Pain intensity (/	100)	60
Joints assessed	 Knee Ankle Shoulder Base-of-thumb 	10 (N=814) 1 (N=75) 2 (N=68) 1 (N=60)
Conditions	- OA - Painful total knee replacement - OA and rheumatoid arthritis - Frozen shoulder	11 (N=900) 1 (N=58) 1 (N=40) 1 (N=28)
Comparators	 - IA saline - IA corticosteroids - IA hyaluronan - Non-IA comparator (physical therapy, education) 	7 (N=611) 4 (N=223) 3 (N=255) 2 (N=93)
JADAD score	- ≥ 4/5	10/14 (71)

Knee: pain outcomes (vs IA comparators)

N=549

N=582

N=270

IA BTA IA Comparator Std. Mean Difference Std. Mean Difference Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI 5.1.1 Short-term Arendt-Nielsen 2017 [32] 4.2 1.1 4.2 0.00 [-0.36, 0.36] 61 1.3 60 18.4% 3.9 0.8 -1.47 [-2.07, -0.87] Bao 2018 [27] 20 5.3 1 40 15.4% 5.2 2.4 40 2.3 Boon 2010 [31] 5.4 20 16.2% -0.08 [-0.62, 0.45] 1.2 4.2 1.3 86 3.9 87 19.0% McAlindon 2018 [33] 0.24 [-0.06, 0.54] Mendes 2019 [30] 1.7 2.5 35 0.00 [-0.41, 0.41] 1.7 2.5 70 17.8% Shukla 2018 [26] 15 5.8 4.1 1.4 1.4 15 13.1% -1.18 [-1.97, -0.40] 257 -0.35 [-0.82, 0.12] Subtotal (95% CI) 292 100.0% Heterogeneity: Tau² = 0.28; Chi² = 32.70, df = 5 (P < 0.00001); l² = 85% Test for overall effect: Z = 1.45 (P = 0.15) 5.1.2 Intermediate-term Arendt-Nielsen 2017 [32] 4.2 1.1 0.17 [-0.19, 0.52] 61 4 1.3 60 19.4% Boon 2010 [31] 5.2 2.1 13 4.9 2.2 28 12.9% -0.14 [-0.79, 0.52] 40 1.3 40 1.2 87 20.7% McAlindon 2018 [33] 86 0.00 [-0.30, 0.30] 1.7 1.3 2.2 35 2.6 70 18.3% Mendes 2019 [30] -0.16 [-0.57, 0.25] Rezasoltani 2020 [28] 28 13.3 82 -0.89 [-1.34, -0.45] 7.4 6.5 6.6 17.4% Shukla 2018 [26] 4.6 1.7 15 5.9 1.2 15 11.3% -0.86 [-1.61, -0.11] 253 -0.27 [-0.61, 0.08] Subtotal (95% CI) 327 100.0% Heterogeneity: Tau² = 0.13; Chi² = 17.94, df = 5 (P = 0.003); l² = 72% Test for overall effect: Z = 1.52 (P = 0.13) 5.1.3 Long-term Boon 2010 [31] 5.2 2.3 21 5.1 2.8 11 23.0% 0.04 [-0.69, 0.77] 4.2 1.3 1.2 82 McAlindon 2018 [33] 76 4.1 29.2% 0.08 [-0.23, 0.39] Rezasoltani 2021 [29] 2.8 1.6 25 5.1 1.8 25 24.8% -1.33 [-1.95, -0.71] 15 Shukla 2018 [26] 5.2 1.5 6 1.2 15 23.0% -0.57 [-1.31, 0.16] 137 -0.43 [-1.12, 0.26] Subtotal (95% CI) 133 100.0% Heterogeneity: Tau² = 0.39; Chi² = 17.33, df = 3 (P = 0.0006); l² = 83% Test for overall effect: Z = 1.23 (P = 0.22) ISPRM International Society of F Favours IA BTA Favours IA Comparator

Knee: activity limitations outcomes (vs IA comparators)

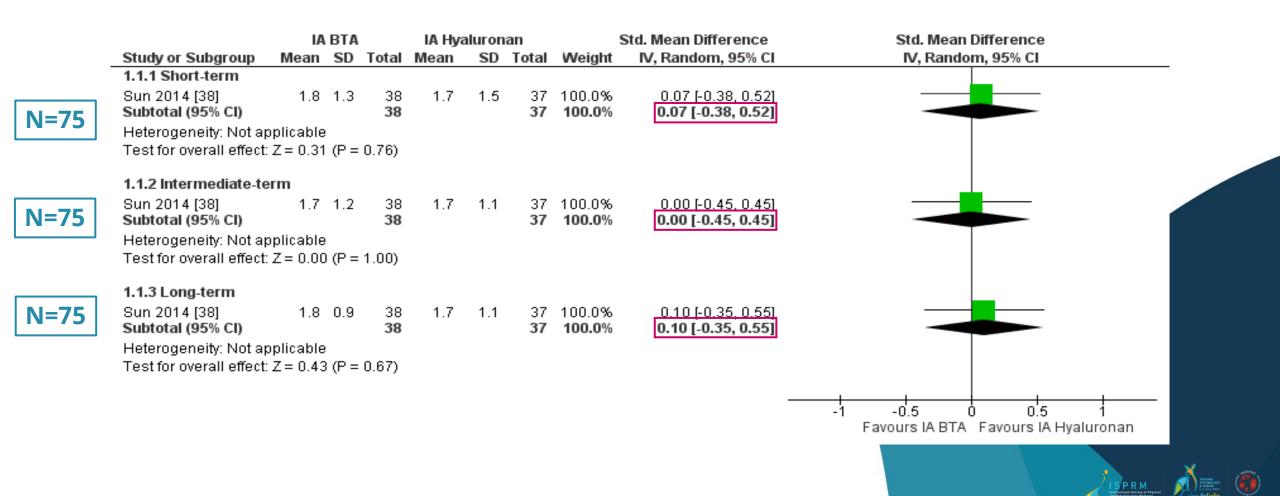
N=506

N=417

N=183

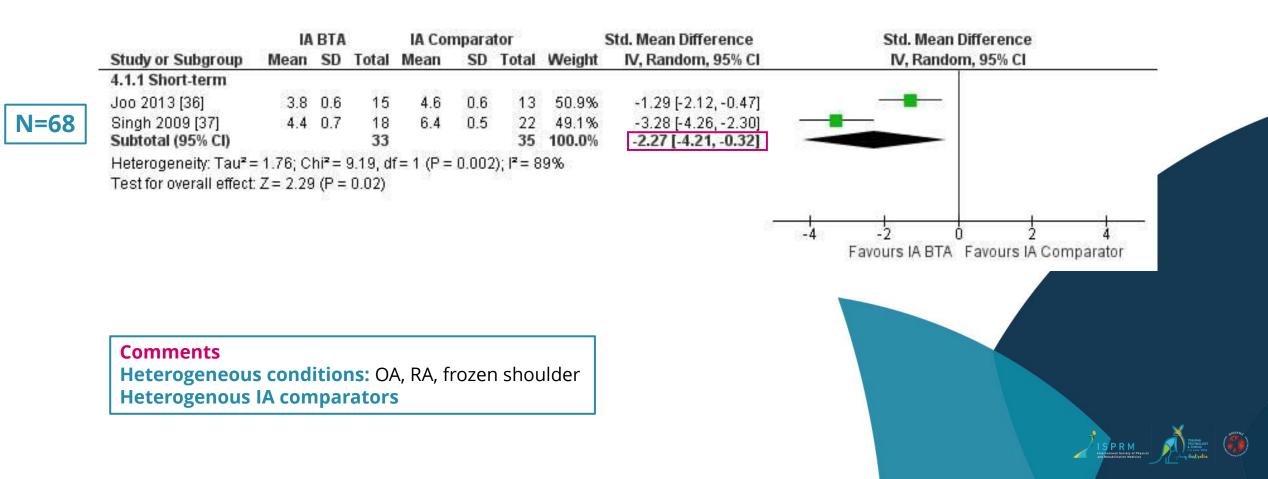
		ABTA			mpara			Std. Mean Difference	Std. Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl	
5.2.1 Short-term									52	
Arendt-Nielsen 2017 [32]	39.3	36.5	61	44.7	37.4	60	18.4%	-0.15 [-0.50, 0.21]	10	
Bao 2018 [27]	29.1	3.9	20	37.3	5.4	40	15.6%	-1.63 [-2.25, -1.02]	· · · · ·	
Boon 2010 [31]	26.7	12.1	40	25.1	10.7	20	16.5%	0.14 [-0.40, 0.67]		
McAlindon 2018 [33]	4	1.9	43	3.7	1.9	87	18.3%	0.16 [-0.21, 0.52]	- 	
Mendes 2019 (30)	26.3	16.6	35	28.5	17.5	70	17.9%	-0.13 [-0.53, 0.28]		
Shukla 2018 [26] Subtotal (95% CI)	29.9	6	15 214	42.2	10.2	15 292	13.4% 100.0%	-1.43 [-2.24, -0.62] -0.44 [-0.96, 0.07]	•	
Heterogeneity: Tau ² = 0.34	; Chi ² = 3	34.79.	df = 5 (l	P < 0.00	001); F	² = 86%				
Test for overall effect: Z = 1		the second second	10		13					
C 2 2 Interne dista torus	32	20 20								
5.2.2 Intermediate-term				00.4	10.0		10.10			
Boon 2010 [31]	20	10.4	28		10.2	13	16.4%	-0.14 [-0.80, 0.52]		
McAlindon 2018 [33]	4	2	43		1.9	87	24.4%	0.21 [-0.16, 0.57]		
Mendes 2019 (30)		15.6	35		19.9	70	23.2%	-0.19 [-0.59, 0.22]		
Rezasoltani 2020 [28]	16.3		29		14.5	82	22.7%	-0.16 [-0.59, 0.26]		
Shukla 2018 [26] Subtotal (95% CI)	28.7	5.4	15 150		11.9	15 267	13.3% 100.0%	-1.37 [-2.18, -0.56] -0.24 [-0.63, 0.15]		
Heterogeneity: Tau ² = 0.13	chiz- 1	2.20	100 2000		V-1Z - 0	- 6.000	100.070	-0.24 [-0.03, 0.15]		
Test for overall effect: Z = 1			ui = 4 (i	P = 0.01), i-= 6	070				
restion overall ellect. Z = 1	.13(F =	0.23)								e la compañía de la c
5.2.3 Long-term										
Boon 2010 [31]	27.8	10.1	21	28.2	12.2	11	31.7%	-0.04 [-0.77, 0.69]		
McAlindon 2018 [33]	4	1.9	39	3.9	1.9	82	38.4%	0.05 [-0.33, 0.43]		
Shukla 2018 [26]	27.4	4.3	15		12	15	29.9%	-1.42 [-2.24, -0.61]		
Subtotal (95% CI)			75			108	100.0%	-0.42 [-1.26, 0.42]		
Heterogeneity: Tau ² = 0.44			df = 2 (l	P = 0.00	5); I² =	81%				
Test for overall effect: Z = 0	.98 (P =	0.33)								
								0 1.		
									-2 -1 0 1 2	
									Favours IA BTA Favours IA Comparator	

Knee: pain outcomes (vs non-IA comparators)

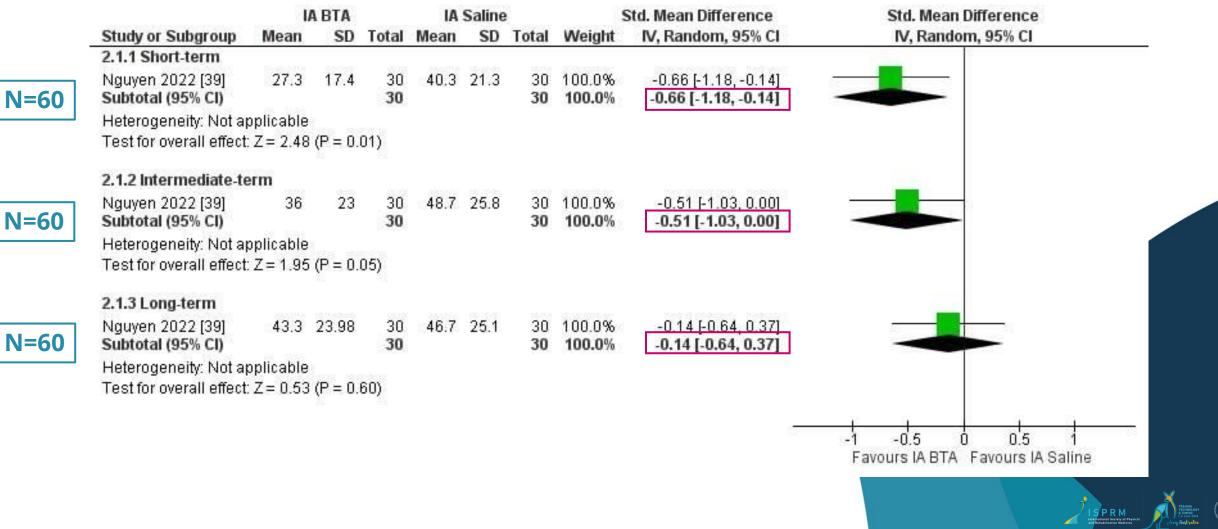


ISPRM Intervalianal Society of Physical and Rehabilitation Medicine

		IA	BTA		Non-IA	Compara	tor		Std. Mean Difference	Std. Mean Difference
	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
-	6.1.1 Short-term									
	Hsieh 2016 [34]	2.9	0.9	22	5.4	1.3	21	47.8%	-2.20 [-2.98, -1.43]	_
N=93	Rezasoltani 2021 [29]	3.6	1.6	25	5.3	1.8	25	52.2%	<u>-0.98 [-1.57, -0.39]</u>	— — —
	Subtotal (95% CI)			47			46	100.0%	-1.57 [-2.76, -0.37]	
	Heterogeneity: Tau ² = 0.6	-		-	1 (P = 0.0	1); I ^z = 84	%			
	Test for overall effect: Z =	= 2.57 (F	P = 0.0	01)						
	6 1 2 Intermediate term									
	6.1.2 Intermediate-term	-								
N=50	Rezasoltani 2021 [29] Subtotal (95% CI)	3	1.7	25 25	4.8	1.8	25 25	100.0% 100.0 %	-1.01 [-1.60, -0.42] -1.01 [-1.60, -0.42]	
	Heterogeneity: Not appli	coblo		25			23	100.070	- 1.0 1 [- 1.00, -0.42]	
	Test for overall effect: Z =		- n í	າດດອງ						
		- 0.00 (i	- 0.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
	6.1.3 Long-term									
	Hsieh 2016 [34]	3.3	1.6	21	5.1	1	20	45.1%	-1.32 [-2.00, -0.63]	_
N=91	Rezasoltani 2021 [29]	2.8	1.6	25	5.1	1.8	25	54.9%	-1.33 [-1.95, -0.71]	
	Subtotal (95% Cl)			46			45	100.0 %	-1.32 [-1.78, -0.87]	◆
	Heterogeneity: Tau ² = 0.0	00; Chi ^z	²= 0.0	0, df = 1	1 (P = 0.9	8); I ^z = 09	6			
	Test for overall effect: Z =	= 5.67 (F	P < 0.0	00001)						
										-4 -2 0 2 4
										Favours IA BTA Favours Non-IA Comparator

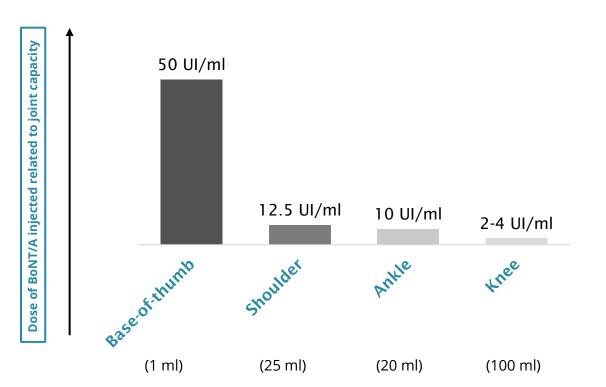


Ankle: pain outcomes (vs IA hyaluronan)



Shoulder: pain outcomes (vs IA GC or anesthetic + saline)

Base-of-the-thumb: pain outcomes (vs IA saline)


Nguyen C et al, Lancet Rheumatol 2022

In summary: effects of IA BoNT/A on pain (vs IA comparators)

	Short term	Intermediate term	Long term	Comments
Knee	-	-	-	6 RCTs, N > 500
Ankle	-	-	-	1 small RCT
Shoulder	+	NR	NR	2 small RCTs Heterogeneous conditions
Base-of-thumb	+	+	-	1 small RCT
Adverse events ? Reported only in 4/ Serious adverse events Minor adverse events 	vents = 0	etween IA BoNT/A and comp	barators	

Discussion and perspectives

- IA BoNT/A may reduce shoulder and base-of-the-thumb pain, but not knee or ankle pain
- Inconsistent results between joint locations may be explained by <u>3 key differences</u>
 - Small vs large studies
 - Weight- vs non-weight-bearing joints
 - Small vs large joints → heterogeneous doses of BoNT/A injected related to joint capacity

Base-of-thumb **12.5 to 25 times higher** than knee !

Future directions → the 4 Ds Dose, Dilution, Diffusion, Duration

Ackowledgements

Principal investigator

Dr. Mathieu Gagnière

Supervisor

Prof. Christelle Nguyen

Radiologists

Prof. Antoine Feydy Dr. Henri Guerini

Dr. Camille Daste

Dr. Marie-Martine Lefèvre-Colau Prof. François Rannou

Dr. Raphaël Campagna

Prof. Jean-Luc Drapé

Investigators Paris Cochin

Thank you

ISPRM International Society at Physical and Rehabilitation Medicine