

A randomized placebo-controlled trial of oral resveratrol for patients with painful knee osteoarthritis (ARTHROL)

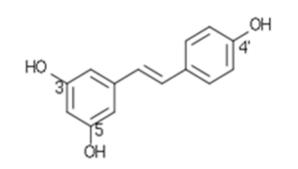
Prof. Christelle NGUYEN, MD, PhD Paris, FRANCE

Université Paris Cité, Faculté de Santé, UFR de Médecine AP-HP.Centre, Hôpital Cochin, Rééducation de l'Appareil Locomoteur et des Pathologies du Rachis, INSERM UMR-S1124, Campus St-Germain-des-Prés

Disclosures

ARTHROL was funded by the French Ministry of Health (PHRC National 2015)

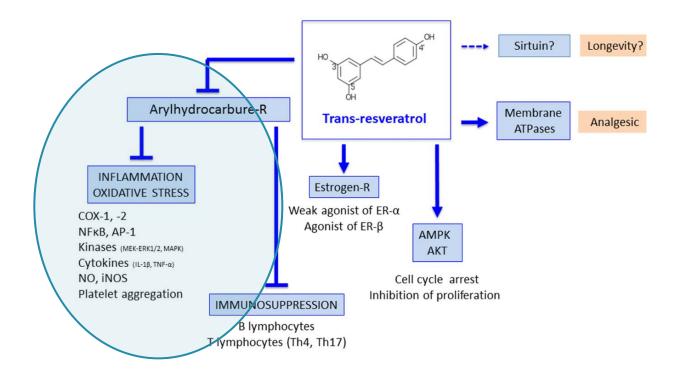
Liberté Égalité Fraternité



Trans-resveratrol (3,5,4'-trihydroxystilbene, t-Res)

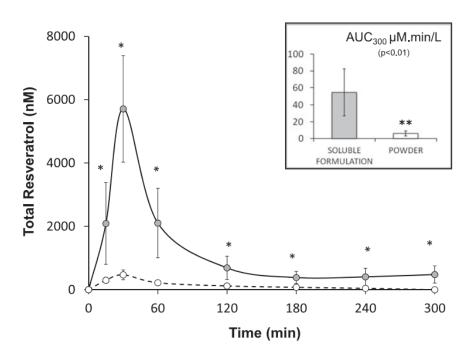
 Parent compound of a family of hydroxystilbenes

 Present in spermatophyte plants: grapevine, peanuts, pine or Chinese knotweed



t-Res effects in osteoarthritis (OA) models

Available over the counter


3 RCTs in knee pain / OA

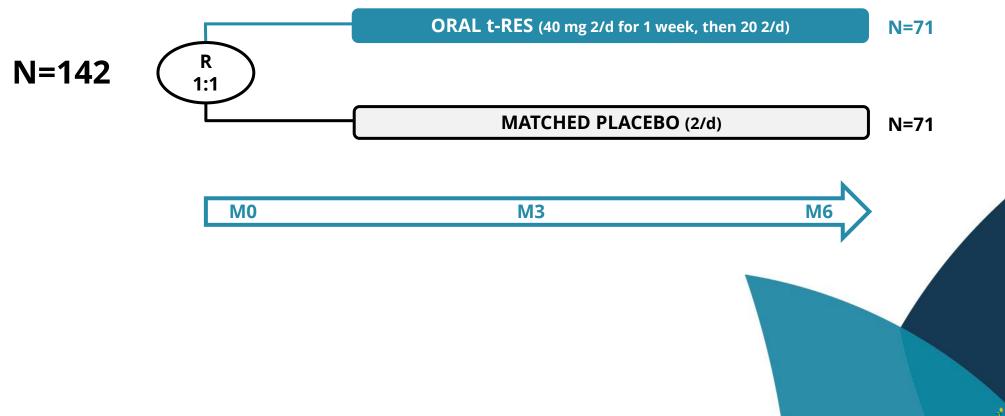
- 75 mg 2/d: no effect
- 500 mg 1/d: **>** pain at M3

Low biodegradibility, a drawback to clinical translation

→ Innovative formulation consisting in a complex dietary oil solution of 20 mg t-Res embedded in a caplet (patent WO: YVERY n° 2010/007252)

Following oral administration of 40 mg (2 caplets):

- AUC₃₀₀ was 54.7 mM min/L versus 6.1 mM min/L for the powder
- Total $AUC_{0-\alpha}$ values were 8.5 times higher for the soluble formulation


Primary objective of ARTHROL trial

To compare the effects of oral t-Res, in this innovative formulation, <u>as an add-on therapy to usual care</u>, with those of matched oral placebo, for individuals with painful knee OA on knee pain variations at 3 months

Design and interventions

Double-blind, randomized, placebo-controlled trial

Participants

Recruitment

- From November 2017 to November 2021
- 3 tertiary care centres in FRANCE
- 6 board-certified physicians (rheumatologists and/or physiatrists), with experience as trialists
- In- and outpatients of the departments

Inclusion criteria

- ≥ 40 years old
- 1986 ACR criteria for knee OA
- Pain involving the knee
- Duration ≥ 1 month
- Intensity ≥ 40/100 on the day of assessment
- **K-L 1, 2 or 3** on X-rays

Exclusion criteria

- History of inflammatory rheumatic diseases
- Neurological disorders involving the lower limbs
- Knee trauma ≤ 2 months
- Intra-articular injections ≤ 2 months
- Knee surgery ≤ 1 year
- Contraindication to resveratrol
- Current use of anticoagulants
- Current use of IM, IV and/or oral corticosteroids

Outcomes

Primary	Mean change in knee pain	3 months
Secondary	Mean change in knee pain Mean change in WOMAC function Mean change in patient global assessment OARSI-OMERACT response Intra-articular injections Analgesics NSAIDs	6 months 3 and 6 months

Analyses

Sample size calculation

- α risk of .05, power (1- β) of .90
- Predicted mean difference in mean change in knee pain at 3 months of 15 (27) points (ES ~ .55) → 69 participants in each group were needed

Descriptive analyses

- Categorical variables were described with frequencies and percentages
- Quantitative variables were described with mean (SD)

Comparative analyses: all were conducted on an intent-to-treat basis

- Continuous outcomes: constrained longitudinal data analysis model
- Dichotomous outcomes: Poisson model with log link under regression standardization framework for estimating the marginal measure of association

All statistical tests were 2-sided: with P < .05 considered statistically significant

Results

Oral resveratrol in adults with knee osteoarthritis: a randomized placebo-controlled trial (ARTHROL)

<u>Christelle Nguyen MD, PhD</u>, Emmanuel Coudeyre MD, PhD, Isabelle Boutron MD, PhD, Gabriel Baron PhD, Camille Daste MD, MPH, Marie-Martine Lefèvre-Colau MD, PhD, Jérémie Sellam MD, PhD, Jennifer Zauderer MD, Francis Berenbaum MD, PhD, François Rannou MD, PhD

Nguyen C et al, PLOS MED, 2024 (in revision)

Flow

ENROLLMENT

Screened for eligibility (n=649)

From October 2017 to November 2021

Not included (n=507)

Did not meet inclusion criteria: n=354

Declined to participate: n=87 Declined to have knee X-rays: n=8 Canceled the appointment: n=36 Recruitment completed: n=22

Randomly assigned (n=142)

ALLOCATION

Assigned to t-Res (n=71)

Unknown status because lost to follow-up (n=1)

Discontinued intervention (n=8)

Complete follow-up (n=68)

Incomplete follow-up (n=3)

FOLLOW-UP

Assigned to placebo (n=71)

Discontinued intervention (n=10) Unknown status because lost to follow-up (n=3) Complete follow-up (n=62) Incomplete follow-up (n=9)

ANALYSIS



Participants

	t-Res	Placebo	Total
	n=71	n=71	n=142
Age (years), mean (SD)	59.8 (8.9)	63.0 (10.1)	61.4 (9.6)
• Women, n (%)	50 (70)	51 (72)	101 (71)
 Body mass index (kg/m²), mean (SD) 	28.3 (6.7)	28.3 (5.6)	28.3 (6.2)
Treatments in the previous 3 months, n (%)			
Intra-articular corticoids and/or hyaluronan	13/70 (19)	7/70 (10)	20/140 (14)
 Non-opioid oral analgesics 	40/68 (59)	46/69 (67)	86/137 (63)
Oral NSAIDs	32/70 (46)	29/70 (31)	61/140 (44)
Home-based exercises	27 (38)	31 (44)	58 (41)
Weight management	30 (42)	22 (31)	52 (37)
Clinical characteristics, mean (SD)			
Knee pain intensity (NRS, 0-100)	56.9 (14.0)	55.5 (13.1)	56.2 (13.5)
• Knee pain duration (years)	8.2 (7.6)	8.9 (8.7)	8.5 (8.2)
• WOMAC function (0-68)	44.1 (16.0)	44.4 (16.9)	44.2 (16.4)
Patient global assessment (NRS, 0-100)	69.2 (20.1)	63.0 (22.0)	66.1 (21.2)
X-ray findings in femorotibial or patellofemoral	compartments, n (%)		
Maximal KL grade 1	13 (18)	11 (16)	24 (17)
Maximal KL grade 2	22 (31)	23 (32)	45 (32)
Maximal KL grade 3	36 (51)	37 (52)	73 (51)

Primary outcome at 3 months

	t-Res n=71	Placebo n=71	Absolute difference (95% CI)	р
Change in knee pain (NRS, 0-100), mean (95% CI)	-15.7 (-21.1 to -10.3)	-15.2 (-20.5 to -9.8)	-0.6 (-8.0 to 6.9)	0.88

~ 55% participants had a 20% reduction in knee pain intensity at 3 months in both groups

Secondary outcomes

	t-Res n=71	Placebo n=71	Absolute difference (95% Cl)	Relative risk (95% CI)	р
3 months after randomization					
Change in WOMAC function (0-68), mean (95% CI)	-9.2 (-13.0 to -5.4)	-10.6 (-14.3 to -6.8)	1.4 (-3.9 to 6.7)	-	0.59
Change in PGA (NRS, 0-100), mean (95% CI)	1.4 (-3.3 to 6.2)	1.2 (-3.5 to 5.9)	0.2 (-5.9 to 6.4)	-	0.95
OARSI-OMERACT response, n (%)	34/66 (52)	34/68 (50)	1.5 (-15.3 to 18.3)	1.03 (0.74 to 1.43)	0.86
Intra-articular corticoids and/or hyaluronan, n (%)	5/67 (8)	6/67 (9)	-1.6 (-10.7 to 7.5)	0.82 (0.27 to 2.51)	0.73
Analgesics, n (%)	38/67 (57)	39/64 (61)	-4.5 (-21.4 to 12.4)	0.93 (0.70 to 1.24)	0.60
NSAIDs, n (%)	18/66 (27)	24/67 (36)	-8.9 (-24.4 to 6.8)	0.75 (0.46 to 1.25)	0.27
6 months after randomization					
Change in knee pain (NRS, 0-100), mean (95% CI)	-16.8 (-23.4 to -10.3)	-17.1 (-23.4 to -10.9)	0.4 (-8.4 to 9.1)	-	0.93
Change in WOMAC function (0-68), mean (95% CI)	-12.6 (-17.3 to -8.0)	-9.4 (-14.0 to -4.9)	-3.2 (-9.5 to 3.1)	-	0.32
Change in PGA (NRS, 0-100), mean (95% CI)	1.8 (-4.2 to 7.9)	1.9 (-3.9 to 7.8)	-0.2 (-7.7 to 7.5)	-	0.98
OARSI-OMERACT response, n (%)	29/60 (48)	34/66 (52)	-3.6 (-21.1 to 13.9)	0.93 (0.74 to 1.43)	0.68
Intra-articular corticoids and/or hyaluronan, n (%)	7/60 (12)	5/65 (8)	4.0 (-6.2 to 14.1)	1.51 (0.55 to 4.39)	0.44
Analgesics, n (%)	30/59 (51)	33/63 (52)	-2.6 (-20.2 to 15.0)	0.95 (0.68 to 1.34)	0.77
NSAIDs, n (%)	15/60 (25)	20/65 (31)	-6.5 (-22.0 to 9.0)	0.79 (0.45 to 1.39)	0.41

Discussion

Main result

• No evidence of a reduction in knee pain at 3 months with this formulation of oral t-Res

Main interpretation

- Oral t-Res may not be effective in this indication
- Oral t-Res may not have a sufficient biological effect on the pain pathways involved in OA

Other hypotheses

- Low bioavailability of t-Res in the targeted tissues?
- "Severe" population: long-lasting and high levels of pain and activity limitations?

Limitations

- No control of co-interventions → reflect the use of t-Res as an add-on therapy
- Underpower (optimistic hypothesis) → more conservative hypothesis (ES ~ .30)

Summary and perspectives

The absolute mean change from baseline in knee pain at 3 and 6 months did not differ between participants who received oral t-Res and those who received matched oral placebo

Our findings do not support the use of t-Res supplementation, in this formulation, for reducing knee pain in adults with painful knee OA

Ackowledgements

Dr. Hendy Abdoul, Dr. Laëtitia Peaudecerf, Dr. Claire du Ranquet

Principal Investigator

Prof. François Rannou

Scientific Director

Prof. Christelle Nguyen

Methodologist

Prof. Isabelle Boutron

Statistician

Dr. Gabriel Baron

Investigators Paris Cochin

Dr. Camille Daste

Dr. Marie-Martine Lefèvre-Colau

Dr. Jennifer Zauderer

Investigators Paris St-Antoine

Prof. Francis Berenbaum

Prof. Jérémie Sellam

Investigator Clermont-Ferrand

Prof. Emmanuel Coudeyre

Thank you

christelle.nguyen2@aphp.fr

