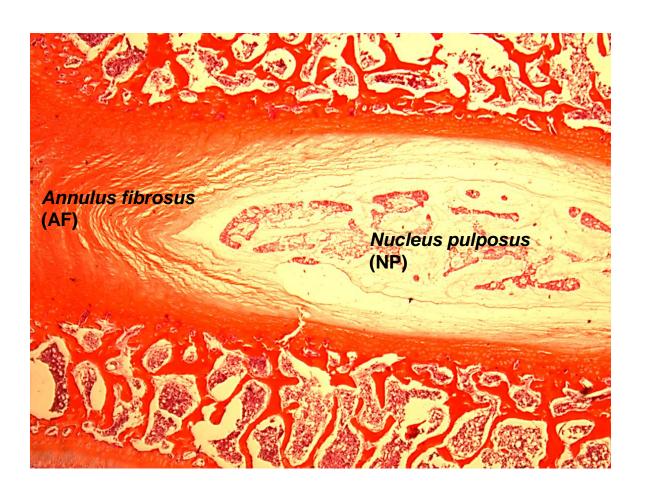




## Hernie discale (HD) exclue Quelle sémiologie ? Quel traitement ?

## As de Pique Jeudi 9 mars 2023


Pr. Christelle Nguyen, MD, PhD

Service de Rééducation et de Réadaptation de l'Appareil Locomoteur et des Pathologies du Rachis, Hôpital Cochin, Paris

#### Questions abordées

- HD exclue : de quoi parle-t-on ? Quel est le « scénario » de l'exclusion ?
- Comment reconnaître une HD qui est en train de s'exclure / est exclue ?
- Quels sont les stratégies thérapeutiques pertinentes ?

#### Hernie discale : définitions



**Stricte**: déplacement focal du <u>nucleus</u> <u>pulposus</u> au-delà des bords du disque

- ~ Hernie du *nucleus pulposus*
- Peu pratique en imagerie
- Difficulté d'affirmer de manière univoque la nature du matériel provenant du disque

SH Lee et al, Radiol Clin North Am 1988

Pratique: déplacement focal de <u>matériel</u> discal (ie, provenant du NP, de l'AF et/ou des plateaux vertébraux) au-delà des bords du disque

RJ Herzog, Spine 1996

#### Classification des hernies discales

#### Perforation de l'AF?

→ Contenue / non contenue

#### Perforation du LLP?

→ Sous- / trans- / extra-ligamentaire

#### Continuité avec le nucleus pulposus ?

→ Exclue / non exclue

#### Déplacement à distance de la perforation de l'AF?

→ Migrée / non migrée

Ligament longitudinal postérieur (LLP)



Exclue sous-ligamentaire non migrée

Exclue sous-ligamentaire migrée

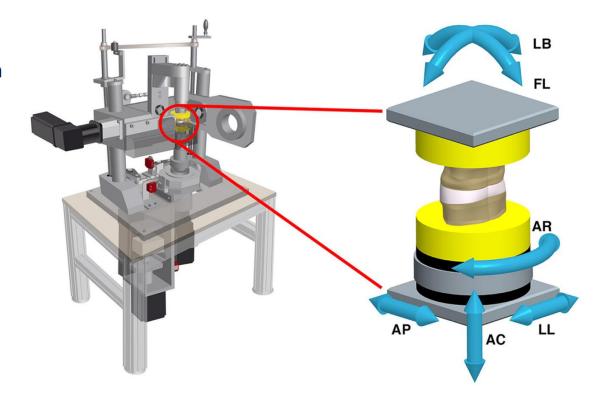
Non exclue

Exclue trans-ligamentaire migrée

Task force
North American Spine Society
American Society of Spine Radiology
American Society of Neuroradiology

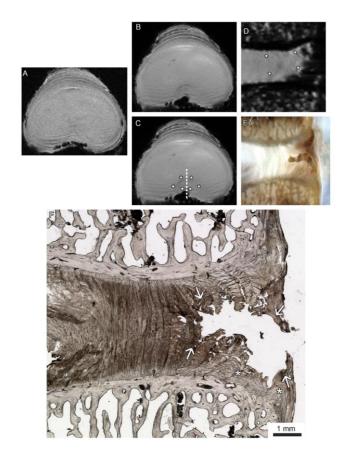
DF Fardon, PC Milette, Spine 2001

## Scénario « anatomique »

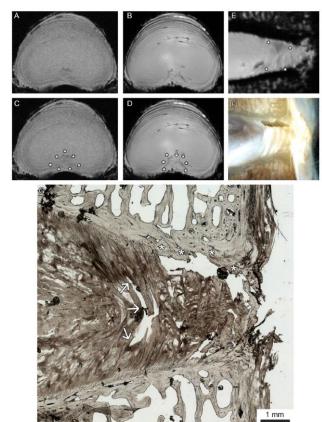

European Spine Journal (2022) 31:1487–1500 https://doi.org/10.1007/s00586-022-07132-y

#### **ORIGINAL ARTICLE**

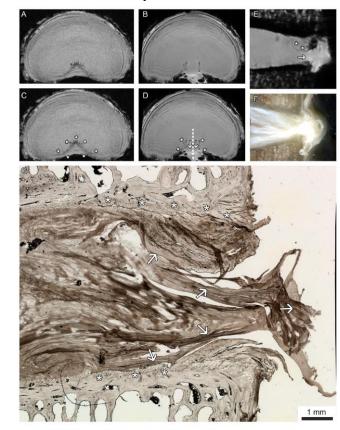
How annulus defects can act as initiation sites for herniation


30 disques prélevés entre L1 et L6 6 brebis adultes de 3 à 5 ans Simulateur de contraintes discales

- 0-12° flexion / extension
- 0-9° inclinaison
- 0-4° rotation
- 0-1500 N compression axiale
- 1000 cycles à 2 Hz




## En 3 étapes


Faillite de l'AF externe



Faillite de l'AF interne Déplacement du NP



Déplacement du matériel discal À travers la perforation de l'AF



## Scénario biologique

#### AUTO-IMMUNE RESPONSE TO NUCLEUS PULPOSUS IN THE RABBIT

W. P. Bobechko, Toronto, Canada, and Carl Hirsch, Gothenburg, Sweden

From the Department of Orthopaedics, University of Gothenburg

1965



**ORIGINAL ARTICLE: PDF ONLY** 

## The Inflammatory Effect of Nucleus Pulposus A Possible Element in the Pathogenesis of Low-back Pain

McCarron, robert f.  $\mathrm{MD}^*$ ; wimpee, marc w.  $\mathrm{MD}^*$ ; hudkins, philip g.  $\mathrm{MD}^\dagger$ ; laros, gerald s.  $\mathrm{MD}^*$ 

Author Information ⊗

Spine 12(8):p 760-764, October 1987.

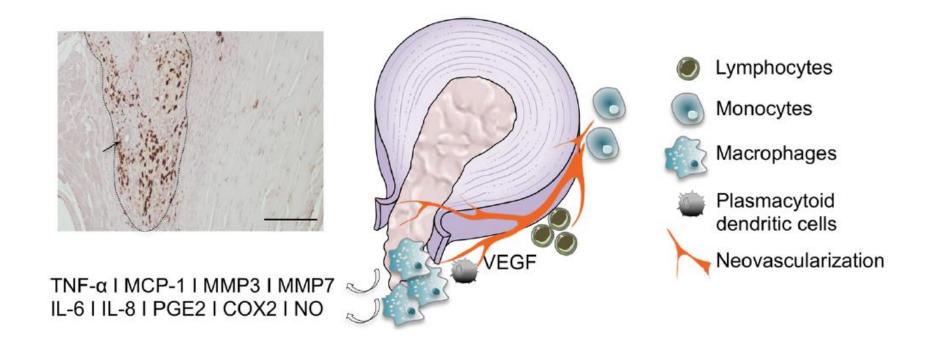
1987



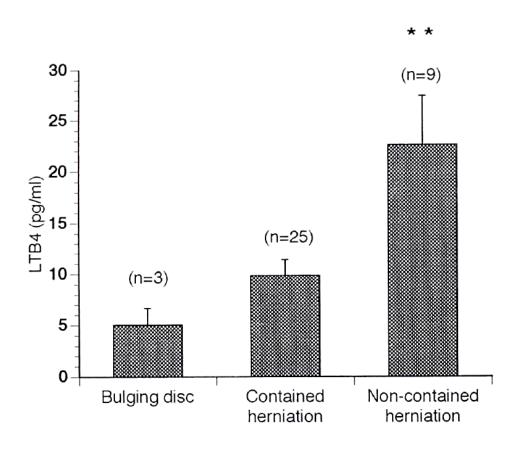
SPINE Volume 32, Number 2, pp 168–173 ©2007, Lippincott Williams & Wilkins, Inc.

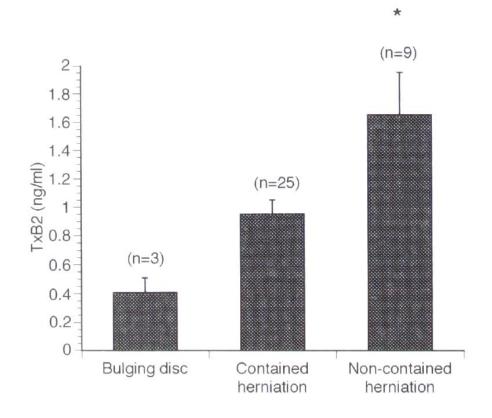
#### Autoimmune Properties of Nucleus Pulposus

An Experimental Study in Pigs


Andrea Geiss, PhD, Karin Larsson, BSc, Björn Rydevik, MD, PhD, Ichiro Takahashi, MD, and Kjell Olmarker, MD, PhD

A Geiss et al, Spine 2007 RF McCarron et al, Spine 1987 WP Bochechko et al, JBJS 1965 REVIEW Open Access





## The inflammatory response in the regression of lumbar disc herniation

Carla Cunha<sup>1,2\*</sup>, Ana J. Silva<sup>1,2</sup>, Paulo Pereira<sup>3,4,5</sup>, Rui Vaz<sup>1,3,4,5</sup>, Raquel M. Gonçalves<sup>1,2,6</sup> and Mário A. Barbosa<sup>1,2,6</sup>



# The Inflammatory Properties of Contained and Noncontained Lumbar Disc Herniation





#### Questions abordées

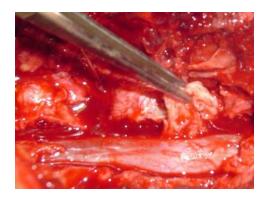
- HD exclue : de quoi parle-t-on ? Quel est le « scénario » de l'exclusion ?
- Comment reconnaître une HD qui est en train de s'exclure / est exclue ?
- Quels sont les stratégies thérapeutiques pertinentes ?

#### Ce que nous avons appris



L'exclusion d'une hernie discale est suspectée quand :

- Dans le cas d'une lomboradiculalgie discale connue
- Souvent à la suite d'un nouvel effort
- La symptomatologie se modifie
  - Les lombalgies disparaissent
  - Le signe de Lasègue disparaît
- syndrome discal
- La radiculalgie persiste de manière prédominante


La HD exclue régresse le plus souvent

## Les lombalgies disparaissent ?



#### Série de cas

N=157 Homme=80% Âge médian=54 ans Symptômes=1 mois



| Madian and mana ()                         | F4 10 00        |
|--------------------------------------------|-----------------|
| Median age, range (years)                  | 54, 19–90       |
| Gender (male)                              | 126 (80.3%)     |
| Etiology                                   | No. (%)         |
| Progressive disease                        | 79 (50.3%)      |
| Spontaneous                                | 78 (49.7%)      |
| Presenting symptoms                        | No. (%)         |
| Median duration (range) (months)           | 1.0 (0.1–120.0) |
| Lower Back Pain                            | 121 (77.1%)     |
| Radicular Pain                             | 104 (66.2%)     |
| Motor Deficit                              | 92 (58.6%)      |
| Paraparesis/Paraplegia                     | 27 (17.2%)      |
| Sensory Deficit                            | 82 (52.2%)      |
| Cauda Equina Syndrome                      | 50 (31.8%)      |
| Sphincter Deficit (Retention/Incontinence) | 40 (25.4%)      |
| Cervical Pain                              | 9 (5.7%)        |
| Thoracic Pain                              | 6 (3.8%)        |
| Intracranial Hypotension                   | 2 (1.3%)        |
| Radiculopathy Level                        | No. (%)         |
| Patients with available data               | 48 (30.6%)      |
| C7                                         | 1 (2.1%)        |
| L2                                         | 3 (6.3%)        |
| L3                                         | 11 (22.9%)      |
| L4                                         | 11 (22.9%)      |
| L5                                         | 21 (43.8%)      |
| S1                                         | 1 (2.1%)        |

## Il persiste une radiculalgie prédominante?



## Étude comparative Protrusion vs extrusion

N=100

Homme=58%

Âge moyen=42 ans

Chirurgie discale

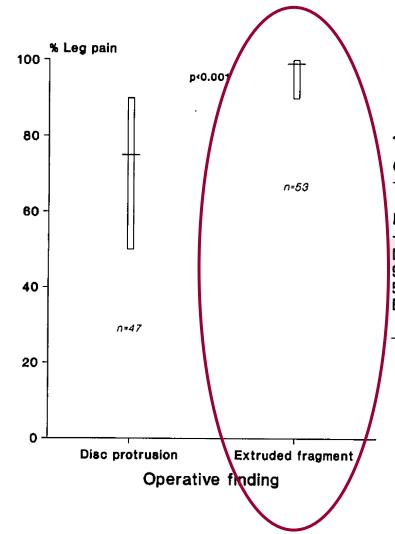
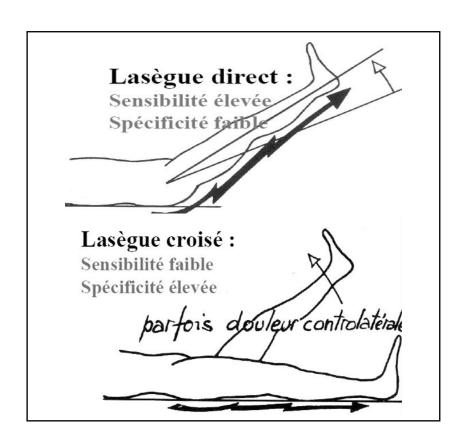




Table 1. Preoperative Pain Distribution Related to Type of Lumbar Disc Prolapse Found at Operation

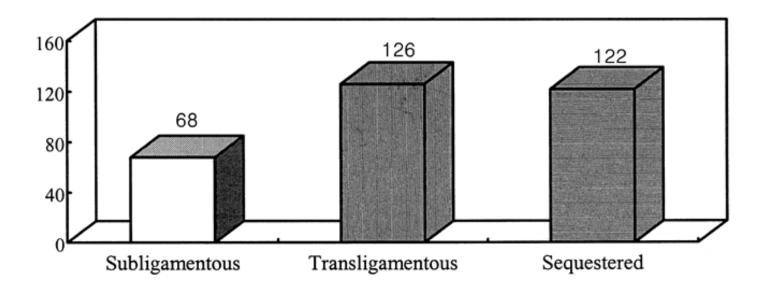
| Pain Distribution    | Extruded<br>Fragment | Disc<br>Protrusion | Total |
|----------------------|----------------------|--------------------|-------|
| Leg pain alone       | 26                   | 1                  | 27    |
| 90-99% leg pain      | 7                    | 5                  | 12    |
| 50-90% leg pain      | 18                   | 31                 | 49    |
| Back pain > leg pain | 2                    | 10                 | 12    |
| Total                | 53                   | 47                 | 100   |

## Le signe de Lasègue disparaît ?



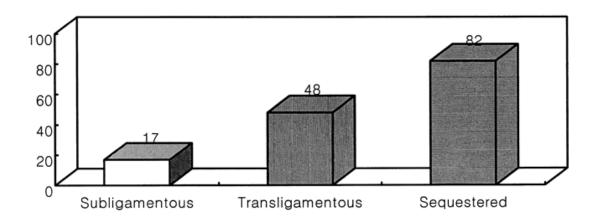


- Peu d'études évaluent les résultats de la manœuvre de Lasègue en fonction du type de HD
- Pas d'association avec la taille, la forme ou la localisation de la HD
- Possible association avec l'importance de la réaction inflammatoire
- La manœuvre de Lasègue semble plus sensible quand la HD est encore contenue


## La HD exclue régresse le plus souvent ?



#### Étude longitudinale


N=36
Homme=53%
Âge moyen=39 ans
Lomboradiculalgie
Traitement conservateur
Suivi IRM ~ 7 mois

Mean HR(%) (HR = ratio HD / sac dural)



## Les HD exclues régressent le plus et le plus souvent

#### Decrease in HR(%)



Herniation types

Table 1. Correlation between Herniation Types and Morphologic Changes

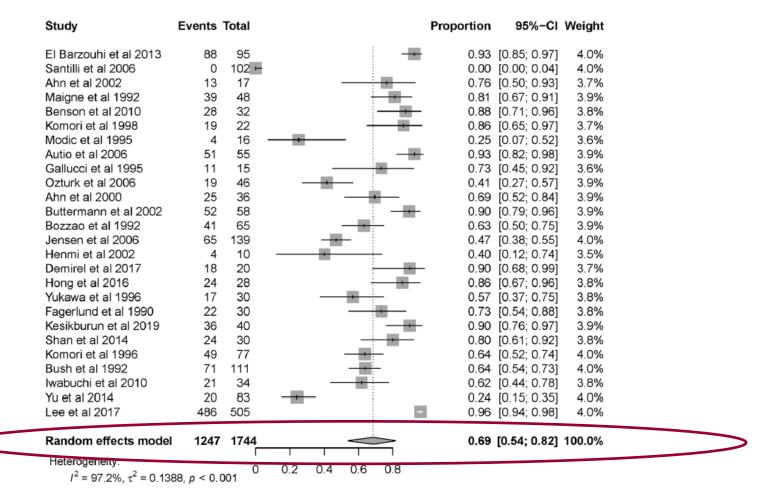
|                                     | Herniation Type                        |                                        |                                      |                    |  |
|-------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------|--------------------|--|
| Size Change                         | Subligamentous (%)                     | Transligamentous<br>(%)                | Sequestered (%)                      | Total              |  |
| Decrease<br>No<br>Increase<br>Total | 10 (56)<br>7 (39)<br>1 (5)<br>18 (100) | 11 (79)<br>2 (14)<br>1 (7)<br>14 (100) | 4 (100)<br>0 (0)<br>0 (0)<br>4 (100) | 25<br>9<br>2<br>36 |  |

#### Les HD exclues régressent le plus souvent

Revue systématique

9 études361 participants

**Table 2.** Percentage of disc regression of lumbar disc herniation.


| Classification | Regression (n) | No change + worse (n) | Percentage of regression (%) | Reference of data source |
|----------------|----------------|-----------------------|------------------------------|--------------------------|
| Bulge          | 8              | 52                    | 13.3 %                       | 3, 4                     |
| Protrusion     | 38             | 55                    | 40.9 %                       | 4, 15, 18                |
| Extrusion      | 108            | 46                    | 70.1 %                       | 4, 12, 15, 18, 22, 33    |
| Sequestration  | 52             | 2                     | 96.3 %                       | 3, 4, 10, 18, 27, 33     |

 $\chi^2$ =101.5, P<0.001 among four groups.

#### En fait, 69% de l'ensemble des HD régressent

Méta-analyse

38 études 2219 participants



## Migration et exclusion prédisent la régression en imagerie

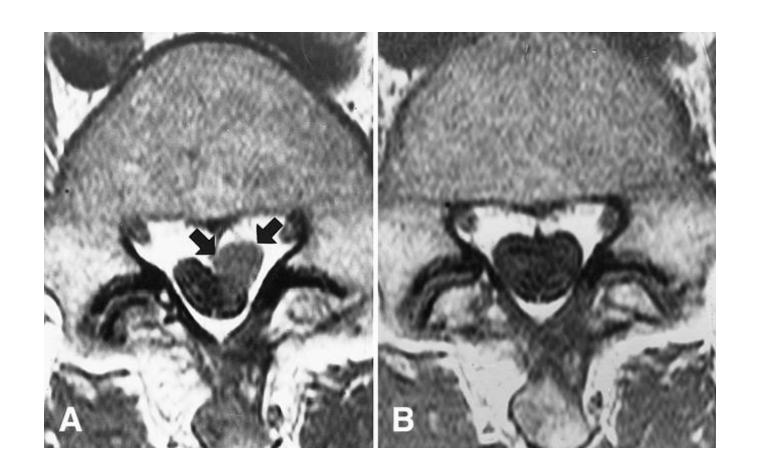
Étude longitudinale

N=505
Homme=61%
Âge moyen=39 ans
Lomboradiculalgie
Traitement conservateur
Suivi IRM ~ 340 jours
Régression ~ 96%

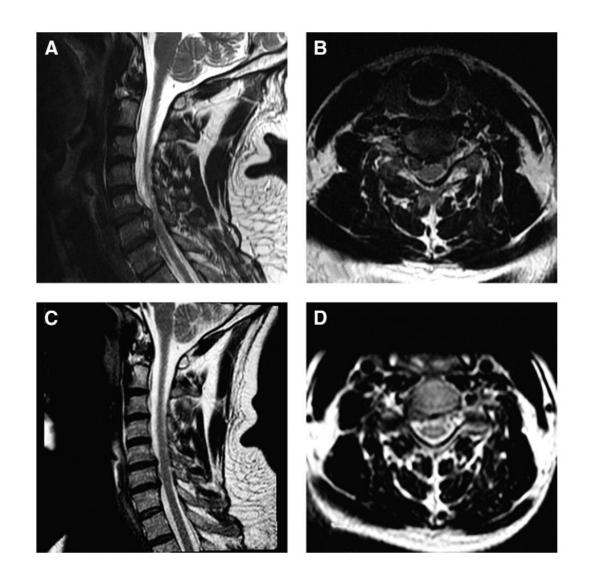
Table 5: Assessment of predictive factors at baseline associated with herniated disc resorption in participants.

|                                        | Univariate |                | Mu   | ltivariate <sup>a</sup> |
|----------------------------------------|------------|----------------|------|-------------------------|
|                                        | OR         | 95% CI         | OR   | 95% CI                  |
| Age (continuous)                       | 1.01       | (0.99, 1.03)   |      |                         |
| Sex, male (ref. female)                | 0.97       | (0.67, 1.37)   |      |                         |
| Disc degeneration grade (ref. I)       |            |                |      |                         |
| II                                     | 3.39       | (0.37, 31.38)  |      |                         |
| III                                    | 3.14       | (0.36, 27.38)  |      |                         |
| IV                                     | 4.57       | (0.53, 39.77)  |      |                         |
| V                                      | 16.67      | (1.36, 204.03) |      |                         |
| Disc herniation type (ref. protrusion) |            |                |      |                         |
| Bulging                                | _          |                |      |                         |
| Extrusion                              | 4.66       | (2.15, 10.13)  | 2.49 | (1.10, 5.60)            |
| Migration                              | 11.82      | (5.02, 27.85)  | 6.3  | (2.58, 15.42)           |
| Sequestration                          | 12.190     | (3.91, 37.95)  | 3    | (0.84, 10.68)           |

#### Les HD exclues sont de meilleur pronostic


Table 3. Correlation between Clinical Outcome and Herniation Types

|                  | Clinical       |                  |           |
|------------------|----------------|------------------|-----------|
| Herniation Type  | Successful (%) | Unsuccessful (%) | Total (%) |
| Subligamentous   | 13 (72)        | 5 (28)           | 18 (100)  |
| Transligamentous | 11 (79)        | 3 (21)           | 14 (100)  |
| Sequestered      | 4 (100)        | 0 (0)            | 4 (100)   |
| Total            | 28 (78)        | 8 (22)           | 36 (100)  |


Table 4. Factors Contributing to Successful Clinical Outcome

| Factor                     | Odds Ratio | P Value |
|----------------------------|------------|---------|
| Decrease in HR* ≥ 20%      | 28.62      | 0.03    |
| Herniation type            | 12.13      | 0.92    |
| Transligamentous extension | 0.09       | 0.92    |
| Final size                 | 0.98       | 0.21    |
| Age                        | 0.93       | 0.11    |
| Follow-up duration         | 1.00       | 0.97    |
| * Herniation ratio.        |            |         |

#### Patient de 37 ans, IRM lombaire à 3 mois d'intervalle



#### Homme de 40 ans, IRM cervicale à 5 mois d'intervalle



#### Questions abordées

- HD exclue : de quoi parle-t-on ? Quel est le « scénario » de l'exclusion ?
- Comment reconnaître une HD qui est en train de s'exclure / est exclue ?
- Quels sont les stratégies thérapeutiques pertinentes ?

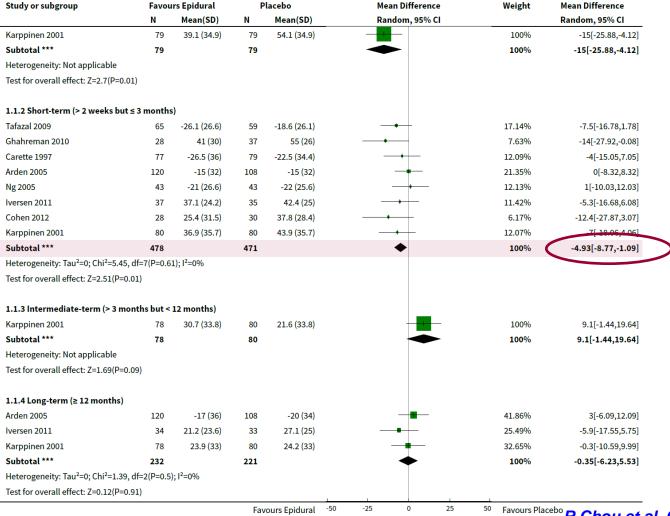
## 2 grandes stratégies à considérer

#### Stratégies de réduction du volume discal

S'il y a des signes neurologiques de gravité

#### **Stratégies anti-inflammatoires**

- Si les symptômes en rapport avec l'inflammation locale sont très intenses
- Mais pourraient ralentir le processus de résorption
- → Infiltrations épidurales, corticoïdes PO, AINS PO


## Accompagnement pluridisciplinaire du patient lombalgique chronique

| Removal of the disc fragment            | 150 (95.5%) |
|-----------------------------------------|-------------|
| Laminectomy                             | 102 (65%)   |
| Bilateral                               | 8 (5.1%)    |
| Discectomy                              | 51 (32.5%)  |
| Hemilaminectomy                         | 30 (19.1%)  |
| Facetectomy                             | 10 (6.4%)   |
| Surgical Fenestration                   | 10 (6.4%)   |
| Anterior Cervical Corpectomy            | 8 (5.1%)    |
| Spine Fusion                            | 5 (3.2%)    |
| No Surgery (Conservative Management)    | 7 (4.5%)    |
| Surgical Technique                      | No. (%)     |
| Minimally Invasive Spine Surgery (MISS) | 16 (10.2%)  |
| Endoscopic Spine Surgery (ESS)          | 1 (0.6%)    |



## Épidurales de corticoïdes : > radiculalgie à court terme

**Méta-analyse** 8 essais cliniques N=949



#### Pas de ≠

Caudale Interlamaire Foraminale

Résultats similaires avec les CTC PO



Mean Difference

### AINS PO: pas de preuve d'efficacité

Study or subgroup

Analysis 1.2. Comparison 1 NSAID versus placebo, Outcome 2 Change in pain intensity summary.

Mean Difference

Placebo

NSAID

Méta-analyse 4 essais cliniques N=918

| ornay or oangroup                        |                   |                            |     |               |                |                 |                     |
|------------------------------------------|-------------------|----------------------------|-----|---------------|----------------|-----------------|---------------------|
|                                          | N                 | Mean(SD)                   | N   | Mean(SD)      | Random, 95% CI |                 | Random, 95% CI      |
| Weber 1993                               | 120               | -11 (19)                   | 94  | -16 (21)      | -              | 25.24%          | 5[-0.44,10.44]      |
| Dreiser 2001a                            | 352               | -45 (26.5)                 | 181 | -40 (26.8)    | -              | 26.26%          | -5[-9.79,-0.21]     |
| Herrmann 2009                            | 57                | -24 (13.5)                 | 28  | -13.7 (13.4)  | -              | 24.19%          | -10.3[-16.38,-4.22] |
| Herrmann 2009                            | 57                | -22 (13.5)                 | 29  | -13.7 (13.4)  | -              | 24.31%          | -8.3[-14.31,-2.29]  |
|                                          |                   |                            |     |               |                |                 |                     |
| Total ***                                | 586               |                            | 332 |               | •              | 100%            | -4.56[-11.11,1.99]  |
| Heterogeneity: Tau <sup>2</sup> =36.6; C | hi²=16.76, df=3(P | =0); I <sup>2</sup> =82.1% |     |               |                |                 |                     |
| Test for overall effect: Z=1.30          | 6(P=0.17)         |                            |     |               |                |                 |                     |
|                                          |                   |                            | Fa  | vours [NSAID] | -50 -25 0 25   | 50 Favours [Pla | acebo]              |
|                                          |                   |                            |     |               |                |                 |                     |

Weight

#### Take home messages

La physiopathologie et la chronologie de l'exclusion discale permettent d'en comprendre l'encchaînement logique des symptômes

#### La sémiologie que nous avons apprise est en partie vraie

- La radiculalgie est le plus souvent au premier plan mais
- Il persiste aussi des lombalgies discales résiduelles

Une HD exclue régresse spontanément, dans > 90% des cas, en moins d'1 an

Les stratégies thérapeutiques sont conservatrices, sauf signes neurologiques de gravité

## « Patience et longueur de temps Font plus que force ni que rage »

J de La Fontaine, Le lion et le rat 1668

